

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.4 - Group Theory | Induced representations and feature fields

Preliminaries (and intuition) for steerable group convolutions

Feature field and induced representation

We call $\hat{f} : \mathbb{R}^d \rightarrow \mathbb{R}^{d_\rho}$ a feature vector field, or simply a **feature field**, if its

codomain transforms via a *representation*

$\rho(h)$ of H

domain transforms via the action

g^{-1} of $G = (\mathbb{R}^d, +) \rtimes H$

Representation ρ defines the **type** of the field, and together with the group action of $G = (\mathbb{R}^d, +) \rtimes H$ defines the **induced representation**

$$(\text{Ind}_H^G[\rho](\mathbf{x}, h) \hat{f})(\mathbf{x}') := \rho(h) \hat{f}(h^{-1}(\mathbf{x}' - \mathbf{x}))$$

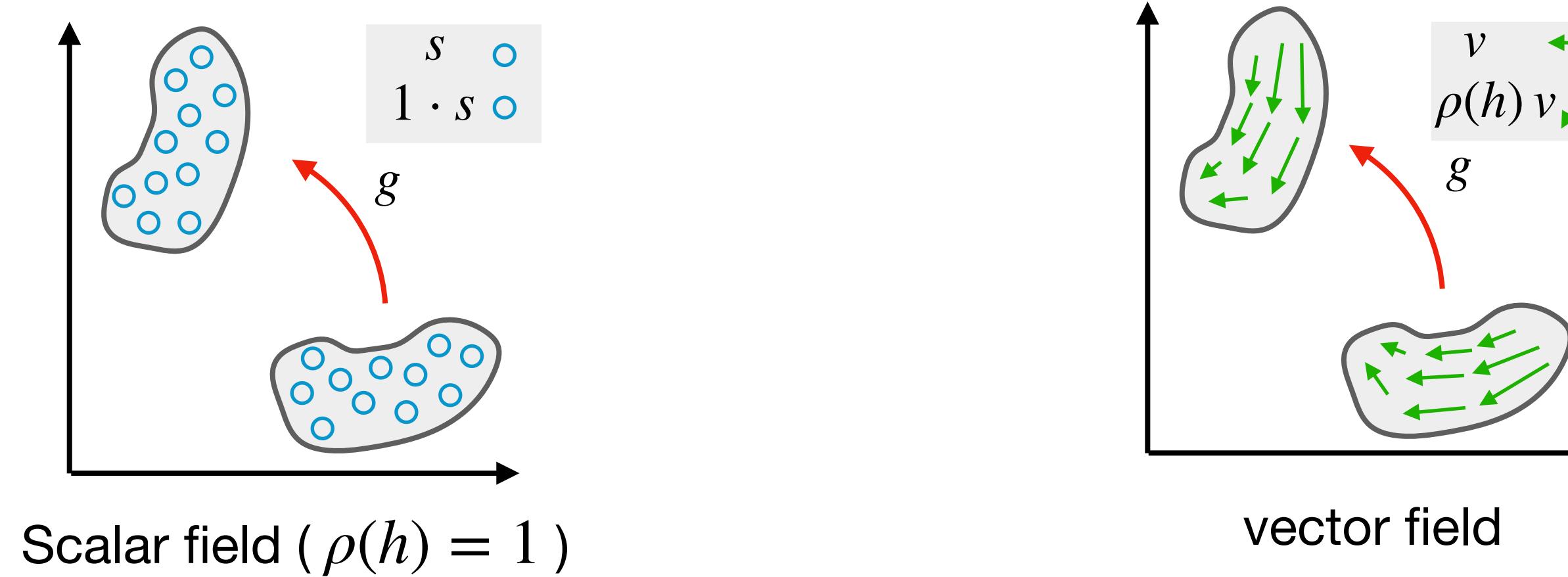
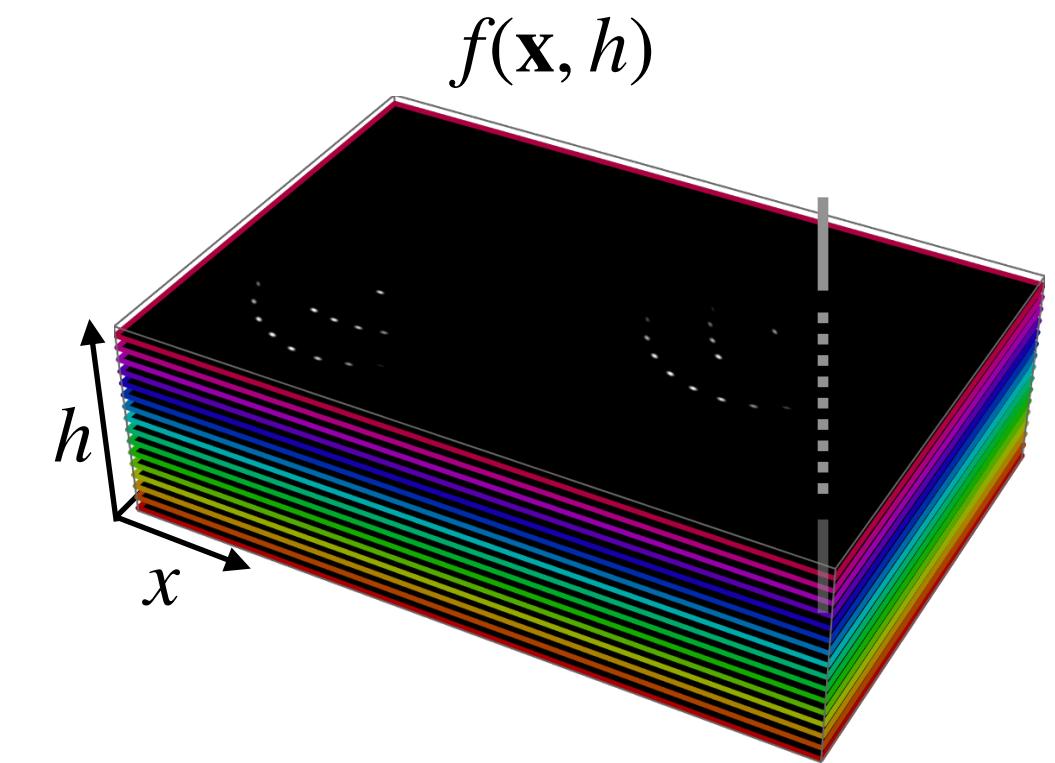


Figure adapted from: Weiler, M., & Cesa, G. (2019). General e (2)-equivariant steerable cnns. NeurIPS
See also <https://github.com/QUVA-Lab/e2cnn>

Feature field and induced representation

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

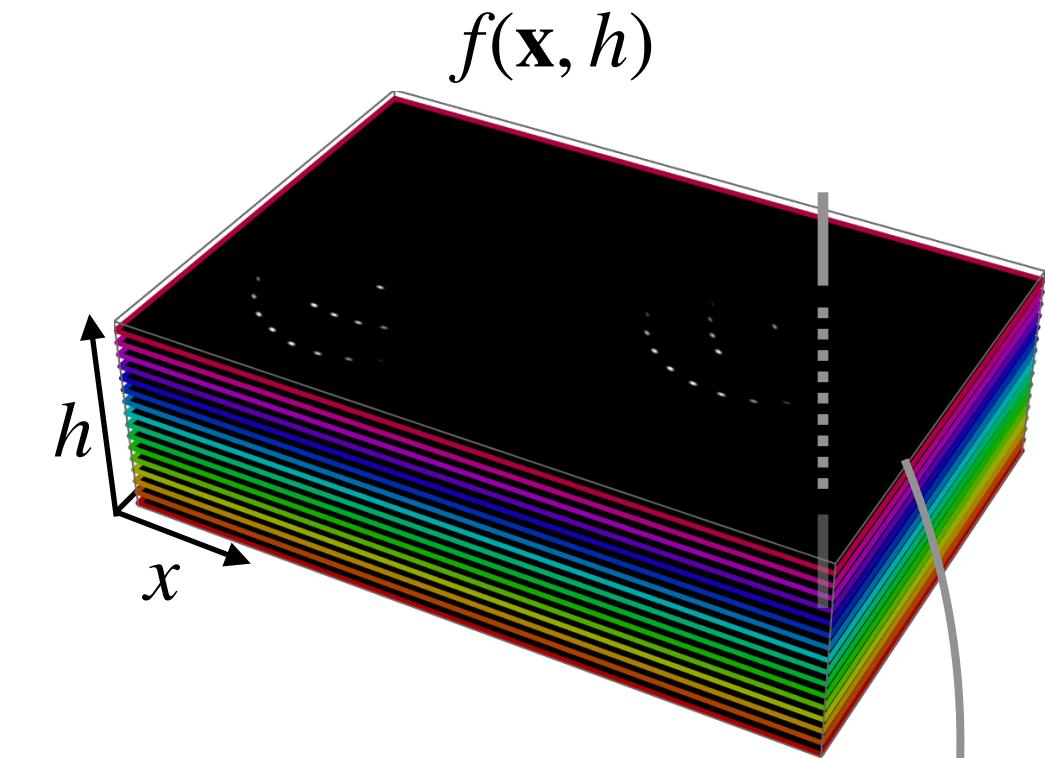
$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$



Feature field and induced representation

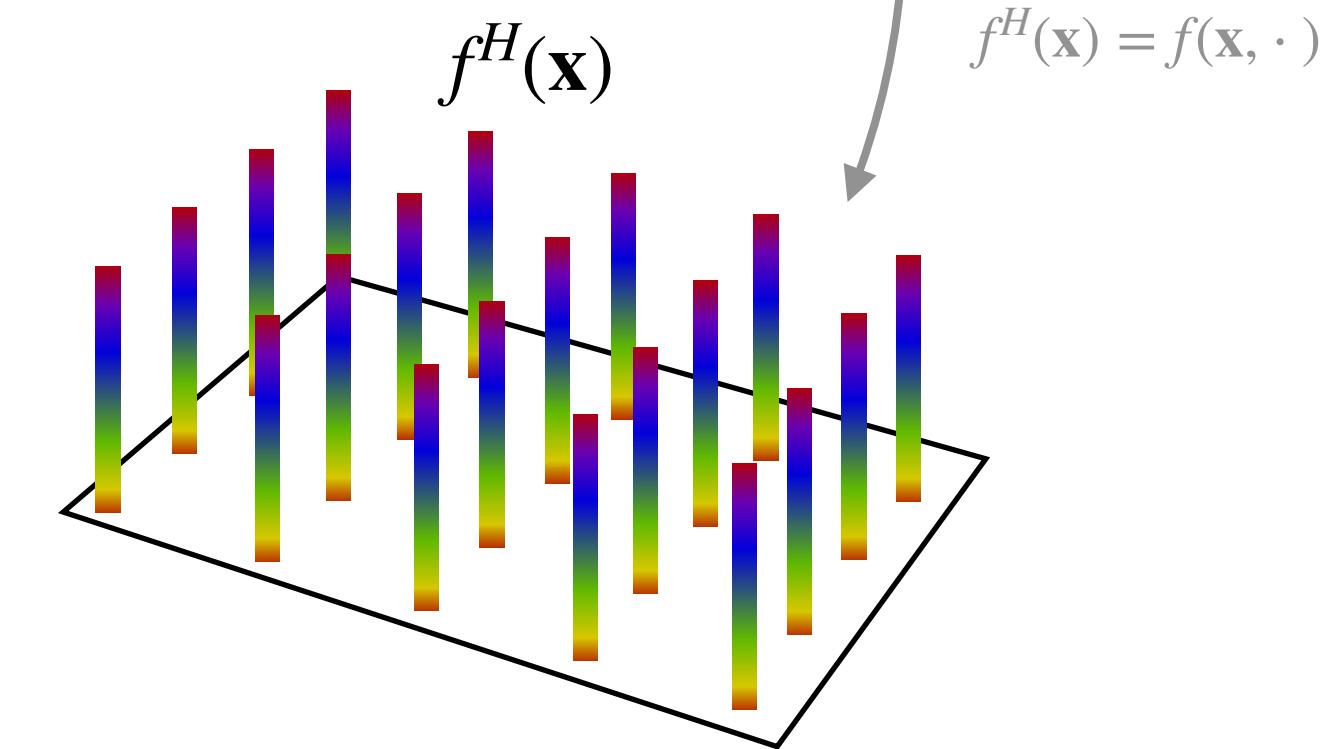
Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$



Regular H feature fields: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \rightarrow \mathbb{R}$ on the subgroup H , then the functions (**fibers**) transform via the regular representation \mathcal{L}_h^H (recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

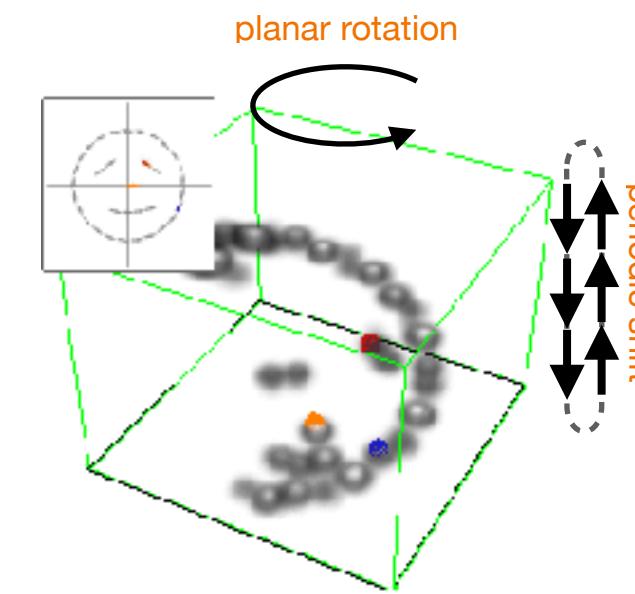
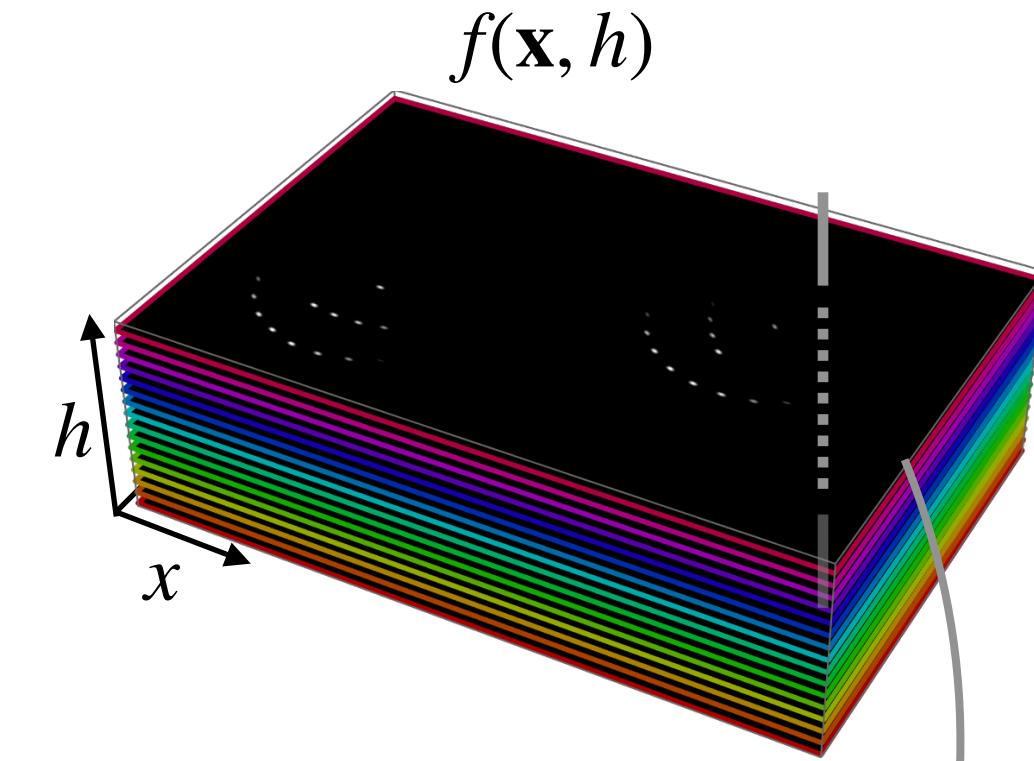
$$(\mathcal{L}_g f)(\mathbf{x}', h') \iff (\text{Ind}_H^G[\mathcal{L}_h^H](\mathbf{x}, h)f^H)(\mathbf{x}')$$



Feature field and induced representation

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

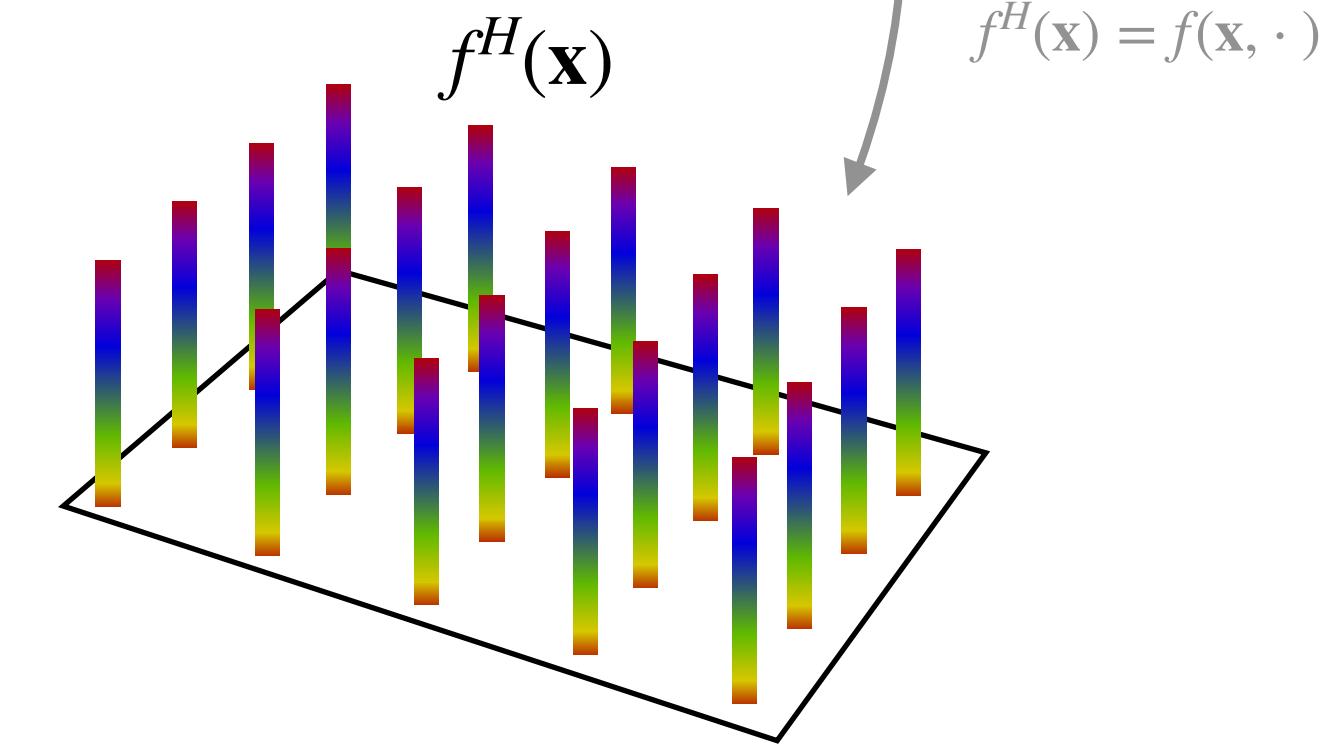
$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$



Regular H feature fields: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \rightarrow \mathbb{R}$ on the subgroup H , then the functions (**fibers**) transform via the regular representation \mathcal{L}_h^H

(recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

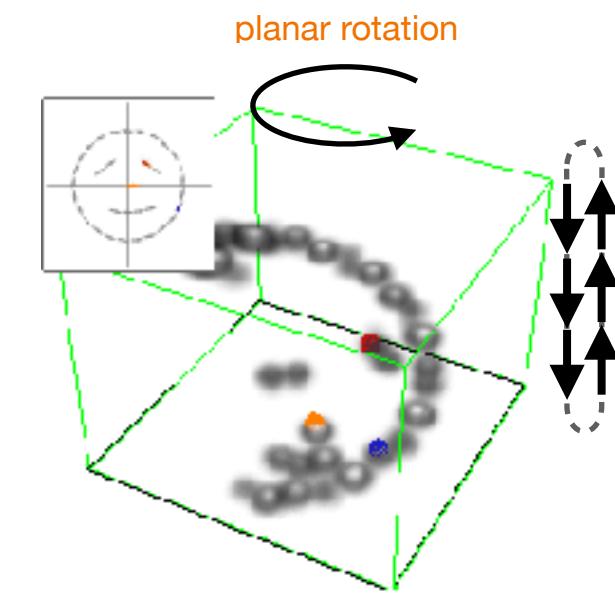
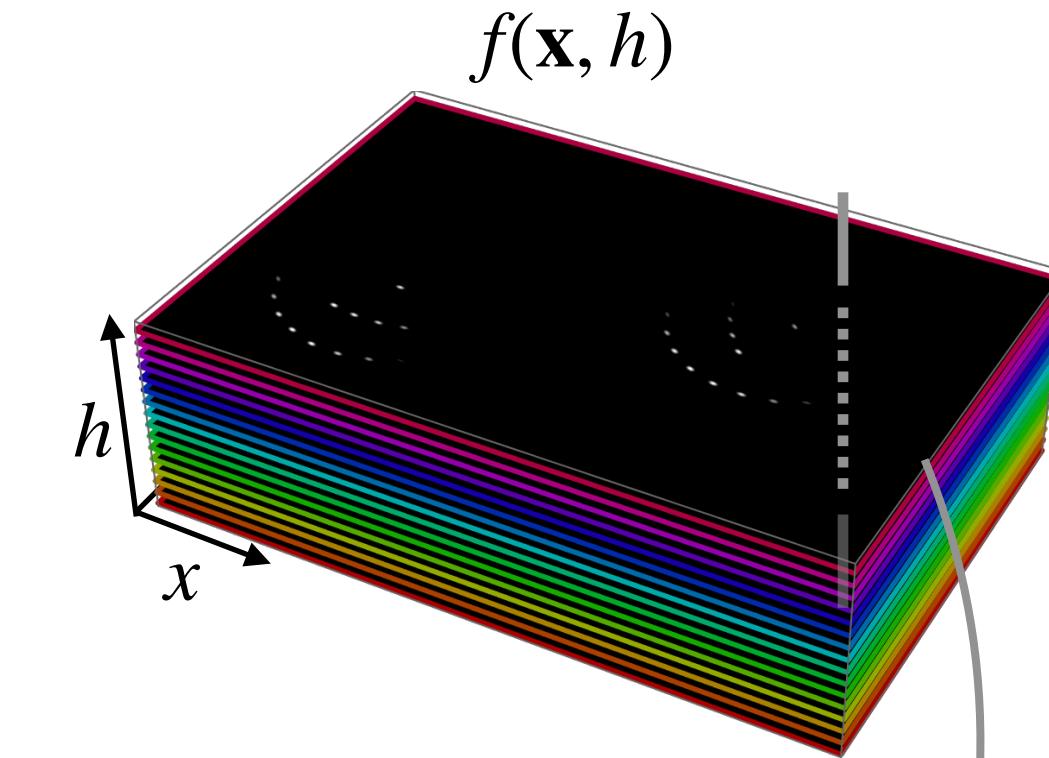
$$(\mathcal{L}_g f)(\mathbf{x}', h') \iff (\text{Ind}_H^G[\mathcal{L}_h^H](\mathbf{x}, h)f^H)(\mathbf{x}')$$



Feature field and induced representation

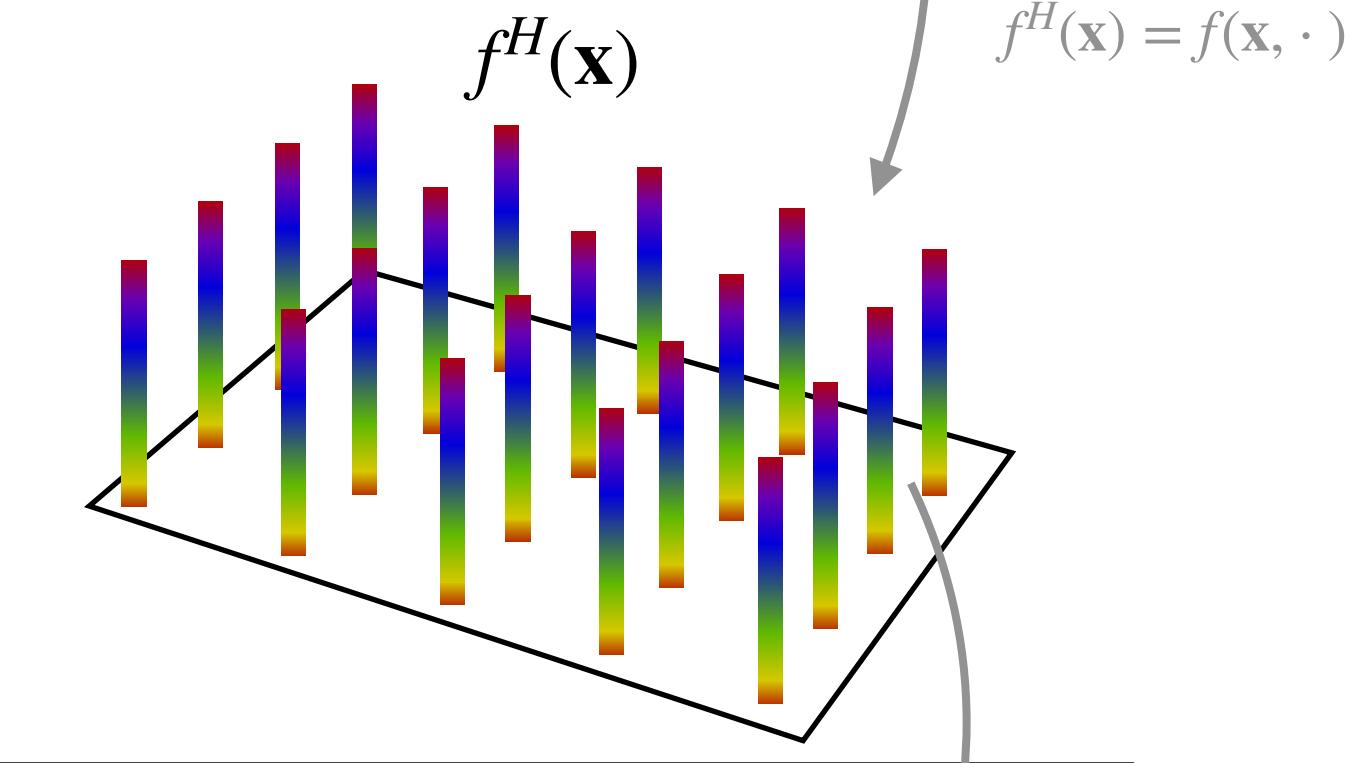
Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$



Regular H feature fields: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \rightarrow \mathbb{R}$ on the subgroup H , then the functions (**fibers**) transform via the regular representation \mathcal{L}_h^H (recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

$$(\mathcal{L}_g f)(\mathbf{x}', h') \iff (\text{Ind}_H^G[\mathcal{L}_h^H](\mathbf{x}, h)f^H)(\mathbf{x}')$$



Steerable H feature fields: Since the fibers $f^H(\mathbf{x})$ are functions on H we can represent them via their Fourier coefficients $\hat{f}(\mathbf{x}) = \mathcal{F}_H[f^H(\mathbf{x})]$. These vectors of coefficients transform via irreps $\rho(h) = \bigoplus_l \rho_l(h)$

$$(\mathcal{L}_g f)(\mathbf{x}', h') \iff \left(\text{Ind}_H^G[\mathcal{L}_h^H](\mathbf{x}, h)\hat{f} \right)(\mathbf{x}') \iff \left(\text{Ind}_H^G[\rho(h)](\mathbf{x}, h)\hat{f} \right)(\mathbf{x}')$$

